.
° ch?sAlamos

NATIONAL LABORATORY
————— (37.194) ~

LA-UR-21-27531

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

A Machine Learning aided hierarchical screening strategy for materials
discovery

Talapatra, Anjana Anu

Slides to accompany tutorial (already approved) on nanoHUB.org

2021-07-30




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher

recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its

technical correctness.



Los Alamos National Laboratory

A Machine Learning aided hierarchical

screening strategy for materials discovery

Anjana Talapatra

Director’s Postdoctoral Fellow

Materials Science & Technology Division
Los Alamos National Laboratory

21st July, 2021

.
fORD

N
LABORATORY DIRECTED N‘ ‘3‘-5"
RESEARCH & DEVELOPMENT toar Security Administration

i i i t of Energy’s NNSA

National Nuc
r the U.S. Departmen



Los Alamos National Laboratory

Discovery and Design of Novel wide band gap Oxide Perovskites
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Objective:
Down select from millions of potential compounds to a relatively small and
tractable set of promising wide band gap oxide perovskites

Oxide Perovskites

* The perovskite structure can accommodate 90% of the metallic ions in the

periodic table
* Amenable to band gap tuning

« Exhibit fascinating electrical and magnetic properties:

+ piezoelectricity, optical properties, BLLbieriacs
e
* high-temperature superconductivity, Thermodynamic Sty of Singls and Double Perovsie Oxdes
. . . . Cite This: httpsy//dx.doi.org/10.1021/acs.chemmater.0c03402 l:l Read Online
* ferroelectricity, magneto-strictive effects TR T e—

Talapatra, Anjana, et al. “A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite
Oxides.” Chemistry of Materials (2021).
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A Strategy for Scintillator Discovery and Optimization
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Objective:

Down select from millions of potential compounds to a relatively small and

tractable set of promising scintillators

Single perovskite (ABO3) Double perovskites

- AA'B,Oq
- A,BBO,
- AABBO
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* Assumptions:

50-50 compositions
2 elements per cation site
Cubic structures

Rocksalt ordering




Why Machine Learning?

* To screen millions of compounds
* Unearth relationships between electronic structure, chemistry, thermodynamic stability, formability and
band gap
*  We know how to:
« C(Calculate thermodynamic stability
* Calculate approximate band gap
* Very complicated to:
 EHstimate synthesizability
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Machine Learning for Efficient Screening
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PerovsKkite discovery using Machine Learning
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Components of ML infrastructure

Training data Data analysis
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Components of ML infrastructure

Training data
* Experimental data 5

from literature

e DFT calculations O 0o 1000010010 Append data
0101001011 .
0010110011
1100010101 6&\%
&

Elemental features
Domain knowledxe

Features

Data analysis

/@i.lll

Models
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Model is as good as your
training data

To increase applicability,
ideally use features that are
easy to populate

Double check, triple check
source of features and values
of features.

90 % of bugs can be attributed
to mistakes in populating
training data
Reproducibility and

consistency
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Components of ML infrastructure

¢ Choose modeling technique
wisely

« Baseline comparisons across
different models

* Ensure that what you are
producing is better than what

is available, else use what is

available

Training data
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Features

Append data
R
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Data analysis

/@:..Il

Random forest models:
- Classification (down-
selection)

- Regression ( band gap)

Models
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Components of ML infrastructure

Cross-validation
Feature selection
Testing
Performance curves
Partial dependencs

Training data Data analysis

Append data

 If possible, increase training 1000010010
data adaptively keeoi 0101001011 o /@ plots
ata adaptively keeping an A I
| 0010110011 | \
eye on performance metrics 1100010101 @i&%
&
* Analyze data and results 6@8&\
<
continuously to ensure it Q@&& /

makes sense intuitively

* Avoid data leakage T AN
2 . o -
 If something seems off, it SRE® 0
_;-5\..\3'5\ & .

probably is off.

Features Models
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Training data

1) Formability classification — Training data: Experimental

e Training data compiled from literature and experimental databases ( ICSD etc)
* 1505 single and double oxide compositions

* 1187 perovskites

* 318 non-perovskites

2 ) Thermodynamic stability classification * Training data: DFT
* Criterion:
* Energy above hull < 50 meV/atom
 3271: stable
* 1881: unstable
Training data:
3 ) Wide/narrow band gap classification * Training data: DFT __* Calculated using
* Criterion: Band gap (E;> 0.5 eV) DFT
1575 :wide band gap * 5152 compounds
 3577:narrow band gap * GGA - PBE
formalism
4 ) Band gap regression — Training data: DFT
1575 : wide band gap materials
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Features: Machine Learning models

Combination of chemical and structural features
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Formability Training dataset
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Comparison of perovskite formability and stability

» Formability: Ability to experimentally synthesizea < Stability: Thermodynamic preference to form the

model structure

* Relies on geometric criteria derived using either ionic ¢ Energy hull construction to determine if the structure
radii or bond distances and is a qualitative approach is on the convex hull and will stabilize and not
to identifying chemistries that will form perovskites. decompose.

It is not known with certainty whether a formable perovskite is necessarily thermodynamically stable
and vice versa.

Are both formability and thermodynamic stability necessary to guarantee the viability of a composition
as a perovskite candidate or is one a more robust metric compared to the other?

UNCLASSIFIED
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Formability classification model
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Random forest classification results for perovskite formability. a) Feature importance plot for all the features with non-

zero values, b) Confusion matrix, c) Receiver operating characteristic (ROC) curves, and d) Precision-recall curves of the
cross-validated random forest classification on test data.
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Stability classification model
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Random forest classification results for perovskite stability. a) Feature importance plot for all the features with non-zero
values, b) Confusion matrix, c) Receiver operating characteristic (ROC) curves, and d) Precision-recall curves of the
cross-validated random forest classification on test data.
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Wide/narrow band gap classification model

https://nanohub.org/tools/perovMLdis

ML-aided High-throughput screening for Novel Oxide Perovskite Discc

By Anjana Talapatra Launch Tool 3 users, detailed usage

Los Alamos National Laboratory 0 Citation(s)
Version 1.0 - published on 15 Jul 2021

ML-based tool to discover novel oxide perovskites with wide band gaps 0 questions (Ask a question)

doi:10.21981/TWE2-ZE74 cite this :
0 review(s)

7/ Edit This tool is closed source. 0 wish(es) (New Wish)

View All Supporting Documents

[0 X

About Watch resource

When watching a resource, you will be

Category Published on You may stop watching at any time.
Tools 15 Jul 2021
Abstract

One of the most basic approaches to problem solving is to conceptualize the problem at different abstraction levels and translate from one
abstraction level to the others easily, i.e., deal with them hierarchically. This concept is especially applicable to the field of novel materials
discovery, wherein large candidate domains can be quickly and efficiently explored by hierarchically discarding irrelevant candidates. In this
tutorial, we illustrate this approach using the example of wide band gap oxide perovskites. We will sequentially search a very large domain

UNCLASSIFIED



https://nanohub.org/tools/perovMLdis

Los Alamos National Laboratory

Novel wide bandgap oxide perovskite predictions
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Novel wide bandgap oxide perovskite predictions

Perovskite domain
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Computational confirmation of results
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Some more suggestions

« Use machine learning only if necessary
* Ensure code is reproducible, with no ad-hoc measures, and all data sources annotated if applicable

 If permissible, have data and codes and scripts publicly available in a repository

* Answer emails from fellow researchers regarding published work and repositories
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Thank you!
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